Multimodal Brain-Tumor Segmentation Based on Dirichlet Process Mixture Model with Anisotropic Diffusion and Markov Random Field Prior
نویسندگان
چکیده
Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use.
منابع مشابه
Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images
ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...
متن کاملDirichlet Process Mixture Model with Spatial Constraints
Dirichlet process (DP) provides a nonparametric prior for the mixture model that allows for the automatic detection of the number of hidden states. Recent introduction of variational Bayesian (VB) inference as a deterministic approach makes it practical to large-scale realworld problems. However, the models proposed so far have intrinsic limitations when used on noisy datasets and in situations...
متن کاملSmooth Image Segmentation by Nonparametric Bayesian Inference
A nonparametric Bayesian model for histogram clustering is proposed to automatically determine the number of segments when Markov Random Field constraints enforce smooth class assignments. The nonparametric nature of this model is implemented by a Dirichlet process prior to control the number of clusters. The resulting posterior can be sampled by a modification of a conjugate-case sampling algo...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملRegion Based Hidden Markov Random Field Model for Brain MR Image Segmentation
In this paper, we present the region based hidden Markov random field model (RBHMRF), which encodes the characteristics of different brain regions into a probabilistic framework for brain MR image segmentation. The recently proposed TV+L model is used for region extraction. By utilizing different spatial characteristics in different brain regions, the RMHMRF model performs beyond the current st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014